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The aim of a number of psychophysics tasks is to uncover
howmammals make decisions in a world that is in flux. Here
we examine the characteristics of ideal and near–ideal ob-
servers in a task of this type. We askwhen and how perfor-
mance depends on task parameters and design, and, in turn,
what observer performance tells us about their decision-
making process. In the dynamic clicks task subjects hear two
streams (left and right) of Poisson clicks with different rates.
Subjects are rewardedwhen they correctly identify the side
with the higher rate, as this side switches unpredictably. We
show that a reduced set of task parameters defines regions
in parameter space in which optimal, but not near-optimal
observers, maintain constant response accuracy. We also
show that for a range of task parameters an approximate
normativemodelmust be finely tuned to reach near-optimal
performance, illustrating a potential way to distinguish be-
tween normativemodels and their approximations. In addi-
tion, we show that using the negative log-likelihood and the
0/1-loss functions to fit these types of models is not equiva-
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lent: the 0/1-loss leads to a bias in parameter recovery that
increaseswith sensory noise. These findings suggestways to
tease apart models that are hard to distinguish when tuned
exactly, and point to general pitfalls in experimental design,
model fitting, and interpretation of the resulting data.
K E YWORD S
decision-making, Poisson clicks, Bayesian inference, dynamic
environment, model identifiability

1 | INTRODUCTION
Decision-making tasks are widely used to probe the neural computations that underlie behavior and cognition (Luce,
1986; Gold and Shadlen, 2007). Mathematical models of optimal decision-making (normativemodels)1 have been key
in helping us understand tasks that require the accumulation of noisy evidence (Wald andWolfowitz, 1948; Gold and
Shadlen, 2002; Bogacz et al., 2006). Suchmodels assume that an observer integrates a sequence of noisymeasurements
to determine the probability that one of several options is correct (Wald and Wolfowitz, 1948; Beck et al., 2008;
Veliz-Cuba et al., 2016).

The random dotmotion discrimination (RDMD) task is a prominent example, in which the neural substrates of the
evidence accumulation process can be identified in cortical recordings (Ball and Sekuler, 1982; Britten et al., 1992;
Roitman and Shadlen, 2002). The associated normative models take the form of tractable stochastic differential
equations (Ratcliff, 1978; Bogacz et al., 2006), and have been used to explain behavioral data (Ratcliff andMcKoon,
2008; Krajbich and Rangel, 2011). Neural correlates of subjects’ decision processes display striking similarities with
these models (Shadlen and Newsome, 1996; Huk and Shadlen, 2005), although a clear link between the two is still
under debate (Latimer et al., 2015; Shadlen et al., 2016).

Poisson clicks tasks (Brunton et al., 2013; Odoemene et al., 2018) have recently become popular in studying the
cortical computations underpinning mammalian perceptual decision-making. Neural activity during such tasks also
appears to reflect an underlying evidence accumulation process (Hanks et al., 2015). The corresponding normative
models and their approximations are low-dimensional and computationally tractable. This makes the task well-suited
to the analysis of data in high-throughput experiments (Brunton et al., 2013). Piet et al. (2018) have extended the
clicks task to a dynamic environment to understand how animals adjust their evidence accumulation strategies when
older evidence decreases in relevance. Glaze et al. (2015) carried out a similar study in an extension of the RDMD task.
Both studies concluded that subjects are capable of implementing evidence accumulation strategies that adapt to the
timescale of the environment.

However, identifying the specific strategy subjects use to solve a decision task can be difficult because different
strategies can lead to similar observed outcomes (Ratcliff and McKoon, 2008). How to set task parameters to best
identify a subject’s evidence accumulation strategy has not been studied systematically, especially in dynamic environ-
ments (Ratcliff et al., 2016). Here, we focus on the dynamic clicks task and aim to understand what task parameters (or
combinations of parameters) determine performance, and under what conditions different strategies can be identified.

In the dynamic clicks task, two streams of auditory clicks are presented simultaneously to a subject, one stream per
1Wewill use the phrases ‘optimalmodel,’ ‘optimal observer,’ ‘normativemodel,’ and ‘ideal observer’ interchangeably, as they refer to the best possiblemodel for
a given set of task and observation constraints.
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ear (Piet et al., 2018; Brunton et al., 2013). Each click train is generated by aMarkov-modulated Poisson process (Fischer
and Meier-Hellstern, 1992) whose click arrival rates switch between two possible values (λlow vs. λhigh). The two
streams have distinct rates which switch at discrete points in time according to amemoryless process with hazard rate
h. Thus streams played in different ears always have distinct rates (λL (t ) , λR (t )). The subject must choose the stream
with highest instantaneous rate when interrogated at a timeT , which ends the trial. Switches occur at random times
that are not signaled to the subjects, whomust therefore base their decision on the observed sequences of Poisson
clicks alone. The rate h at which the environment changes is a latent variable that needs to be learned for optimal
performance. In this study, however, our observer models always use a constant rate of change for their environment 2.

We analyze the normativemodel of the dynamic clicks task to shed light on how its response accuracy depends on
task parameters, as this is a measure commonly used when fitting to behavioral data (Piet et al., 2018). As shown in
Section 2, the ideal observer accumulates evidence from each click to update their log likelihood ratio (LLR) of the two
choices. Each click corresponds to a pulsatile increase or decrease in the LLR. Importantly, evidencemust be discounted
at a rate that accounts for the timescale of environmental changes.

Themain goal of this work is to identify how task parameters shape an ideal observer’s response accuracy, and the
identifiability of evidence accumulationmodels. We find effective parameters that can be fixed to keep the accuracy
of the ideal observer constant.3 One such parameter is the signal-to-noise ratio (SNR) of the clicks during a single
epoch between changes and the other is hT , the trial lengthT rescaled by the hazard rate h. These two parameters
fully determine the accuracy of an optimal observer interrogated at the end of the trial (Section 3), as well as response
accuracy conditioned on the time since the final change point of a trial (Section 4).

While the normativemodel determines the optimal strategy, subjects may also use heuristics or approximations
that are potentially simpler to implement. The accuracy of approximatemodelsmay also bemore sensitive to parameter
changes, so fitting procedures converge more rapidly. As an example we consider a linear model, which has been
previously fit to data from subjects performing dynamic decision tasks (Piet et al., 2018; Glaze et al., 2015), and has also
been studied as an approximation to normative evidence accumulation (Veliz-Cuba et al., 2016). To obtain response
accuracy close to that of the normativemodel, the discounting rate of the linear model needs to be tuned for different
click rates and hazard rates (Section 5). In contrast, the discounting rate in the normative (nonlinear) model equals the
hazard rate. Moreover, the linear model’s accuracy is more sensitive to changes in its evidence-discounting parameter
than the nonlinearmodel. 4 This effect is most pronounced at intermediate SNR values, suggesting a task parameter
range where the twomodels can be distinguished.

Lastly, we ask howmodel parameters can be inferred from subject responses. Usingmaximum likelihood fits of the
models to choice data, we show that the fit discounting parameters are closer to the true parameter in the linear model
compared to the nonlinear model (Section 6). This is expected, since the response accuracy of the nonlinear model
depends weakly on its discounting parameter. We also explore the impact of the loss function on model fitting, and
show that in the presence of sensory noise using a 0/1-loss function results in a systematic bias in parameter recovery
(Section 7). The 0/1-loss function gives a one unit penalty on trials in which the decision predicted by themodel and the
data disagree, and no penalty when they agree. Therefore, minimizing this loss function leads tomodels that best match
the trial-to-trial responses in the data rather than the response accuracy.

Ultimately, our findings point to ways of identifying task parameters for which subjects’ decision accuracy is
2See Radillo et al. (2017) for an optimal observer that can learn the hazard rate h in a dynamic version of the RDMD task. This approach can be extended to the
case of the dynamic clicks tasks as in Radillo (2018).3We use the term “accuracy” to refer to the percentage of correct choices for a given model and parameter set. This is our primary measure of a model’s
performance on the task.4The ‘nonlinear’ model here refers to the family of models obtained by tuning the discounting rate away from the value defining the normative model. This
detuning results in amodel that is not normative.
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sensitive to themode of evidence accumulation they use in fluctuating environments. We also show how using different
models and different data fittingmethods can lead to divergent results, especially in the presence of sensory noise. We
argue that similar issues can arise whenever we try to interpret data from decision-making tasks.

2 | NORMATIVE MODEL FOR THE DYNAMIC CLICKS TASK
In the dynamic clicks task an observer is presented with two Poisson click streams, sL (t ) and sR (t ) (0 < t ≤ T ), and
needs to decide which of the two has a higher rate (Brunton et al., 2013). The rates of the two streams are not constant,
but change according to a hidden, continuous-timeMarkov chain, x (t ), with binary state space {xR , xL }. The frequency
of the switches is determined by the hazard rate, h, so that P(x (t + d t ) , x (t )) = h · d t + o(d t ). The left and right
rates, λL (t ) and λR (t ), can each take on one of two values, {λhigh, λlow }with λhigh > λlow > 0. When x (t ) = xL , we have
(λL (t ), λR (t )) = (λhigh, λlow), and when x (t ) = xR the opposite is true. Therefore x (t ) = x k means that stream k has the
higher rate at time t : λk (t ) = λhigh (Fig. 1A). The observer is prompted to identify the side of the higher rate stream,
x (T ), at a random timeT . The interrogation time,T , is sampled ahead of time by the experimenter for each trial and is
unknown to the subject. We refer the reader to Piet et al. (2018) and Brunton et al. (2013) for more details about the
experimental setup.

This task is closely related to the filtering of a HiddenMarkovModel studied in the signal processing literature (Cappé
et al., 2005; Rabiner and Juang, 1986). For a single, 2-stateMarkov-modulated Poisson process (Fischer andMeier-
Hellstern, 1992), the filtering problemwas solved by Rudemo (1972) – see also (Snyder, 1975) for review and extensions.
This filtering problem corresponds to a task in which a single, variable rate click stream is presented to the observer who
has to report whether at some timeT the rate is high or low. In the present case, the observer is presentedwith two
coupledMarkov-modulated Poisson processes. The normativemodel reduces to that considered by Rudemo (1972)
whenwe consider a single stream version of the task, so our approach can be considered a generalization.

Assuming the Poisson rates {λhigh, λlow }, and the hazard rate, h, are known, a normativemodel for the inference
of the hidden state, x (t ), has been derived by Piet et al. (2018). The resulting model can be expressed as an ordinary
differential equation (ODE) describing the evolution of the LLR of the two environmental states:

yt := log P(x (t ) = x
R |sR (t ), sL (t ))

P(x (t ) = xL |sR (t ), sL (t )) . (1)

For completeness, we present the derivation in Appendix A, yielding the sameODE as Piet et al. (2018):

dyt
d t

= κ


∞∑
i=1

δ(t − t Ri ) −
∞∑
j=1

δ(t − t Lj )
︸                                   ︷︷                                   ︸

right and left click streams

− 2h sinh(yt )︸        ︷︷        ︸
nonlinear discounting

, (2)

where κ := log(λhigh/λlow) is the evidence gained from a click, δ(t ) is the Dirac delta function centered at 0, and t Ri (resp.
t L
j
) is the i -th right click (resp. j -th left click).
Eq. (2) has an intuitive interpretation: A click provides evidence that the higher rate stream is on the side at which

the click was heard. Thus, a click heard on the right (left) results in a positive (negative) increment in the LLR (Fig. 1B).
Since the environment is volatile, as evidence recedes into the past it becomes less relevant. In Eq. (2) each click is
followed by a superlinear decay to zero. Note that the discounting term only depends on the current LLR, yt , and the
hazard rate, h, and not on the click rates.
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F IGURE 1 A: Schematic of the dynamic clicks task from Piet et al. (2018). B:A single trajectory of the log-likelihood
ratio (LLR), yt , during a trial. The click streams and environment state are shown above the trajectory. C:Response
accuracy of the ideal observer as a function of interrogation time for two distinct SNR values, S/√h, defined in Eq. (6).
Two distinct pairs of click rates used in simulations (λlow = 30 and 60Hz) were chosen tomatch each SNR at hazard rate
h = 1Hz, resulting in overlaying dashed (λlow = 30Hz) and solid (λlow = 60Hz) lines. For S/√h = 2, we take
(λhigh, λlow) = (58.17, 30) and (97.67, 60); for S/√h = 4, (λhigh, λlow) = (70, 30) and (112.54, 60). Fixing c1 and c2 in Eq. (6)
yields a match in accuracy for both pairs of click rates. As time evolves during the trial, accuracy saturates. Note hT and
S/
√
h jointly determine accuracy. D:Maximal accuracy of the ideal observer atT � 1 is constant along level curves

(black lines) of S/√h (seen as a function of (λlow, λhigh)with constant h) across a wide range of parameters, consistent
with Eq. (6). We only show the (λlow, λhigh) region where 0 < λlow < λhigh. Level curves of S are oblique parabolas in the
(λlow, λhigh) plane. D(Inset): Level curves slightly underestimate accuracy for small λhigh and λlow (black: maximal
accuracy; blue: maximal accuracy for large values of λhigh and λlow). See Appendix F for details onMonte Carlo
simulations.

Performance on the taskmay increase with the informativeness of each click, κ = log(λhigh/λlow). However, κ alone
does not predict the response accuracy (i.e. the fraction of correct trials) of the normativemodel (Brunton et al., 2013;
Piet et al., 2018). In the next section, we will show that an ideal observer’s response accuracy is determined by the
click frequencies (λhigh, λlow) and the hazard rate h: A sequence of a few very informative clicks may provide asmuch
evidence as many clicks, each carrying little information. But if the environmental hazard rate is high, even informative
clicks quickly lose their relevance.

The LLR, yt , contains all the information an ideal observer has about the present state of the environment, given the
observations (Gold and Shadlen, 2002). If interrogated at time t = T , sign(yT ) = ±1, determines themost likely current
state (xR for +1 and xL for −1), and therefore the response of an optimal decisionmaker. In the following, wewill show
that two effective parameters govern the response accuracy of the optimal observer.
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3 | THE SIGNAL-TO-NOISE RATIO OF DYNAMIC CLICKS
Four parameters characterize the dynamic clicks task: the hazard rate, h, duration of a trial, i.e. interrogation time,T ,
the low click rate, λlow , and the high click rate, λhigh . However, we next show that only two effective parameters typically
govern an ideal observer’s performance (Fig. 1C,D): the product of the interrogation time and the hazard rate, hT , and
the signal-to-noise ratio (SNR) of the dynamic stimulus. The former corresponds to themean number of switches in a
trial, and the latter combines the click rates λlow and λhigh into a Skellam–type SNR (Eq. (4) below), scaled by the hazard
rate h (Eq. (6)).

Tomotivate our definition, consider first the case of a static environment, h = 0Hz, forwhich the normativemodel is
given by Eq. (2) without the nonlinear term. Since κ does not affect the sign of yt , response accuracy depends entirely on
the difference in click counts N R (t ) − N L (t ), whereN j (t ) are the counting processes associated with each click stream.
Thus we can define the difference in click counts as the signal, and the SNR as the ratio between the signal mean and
standard deviation at timeT (Skellam, 1946),

SNRT0 := E[N R (T )] − E[N L (T )]√Var[N R (T )] + Var[N L (T )] = T λhigh −T λlow√
T λhigh +T λlow

= S ·
√
T , (3)

where

S := λhigh − λlow√
λhigh + λlow

. (4)

In a dynamic environment, the volatility of the environment, governed by the hazard rate, h, also affects response
accuracy. The environment can switch states immediately before the interrogation time, T , decreasing response
accuracy. This suggests that accuracy will not only be determined by the click rates, but also by the length of time
the environment remains in the same state prior to interrogation. Using this fact and the definition of SNR in a static
environment, we determine the statistics for the difference in the number of clicks between the high- and low-rate
streams during the final epoch preceding interrogation (for derivation details see Appendix B). Averaging over the
Poisson distributions characterizing the click numbers, and the epoch length distribution yields a nonlinear expression
representing the SNR that involves S/√h, and the rescaled trial time hT :

F (hT , S/
√
h) = (1 − e−hT )S/√h√

(1 − 2hT e−hT − e−2hT )S2/h + 1 − e−hT . (5)

The unitless measure of trial duration, hT , characterizes the timescale of the evolution of the LLR, yt . As accuracy
should not depend on the units in which we measure time, this is a natural measure of the evidence accumulation
period 5. As indicated, F (hT , S/√h) only depends on hT and S/√h. We therefore predict that optimal observer
response accuracy is determined by the following two parameter combinations,

S/
√
h =

λhigh − λlow√
h(λhigh + λlow)

= c1 and hT = c2 . (6)

Henceforth, wewill refer to S/√h as the SNR and hT as rescaled trial time. Note that the term S/√h can also be realized
as a SNR of Eq. (2) by performing a diffusion approximation, and computing the SNR of the corresponding drift-diffusion
5This is related to dimensional analysis often usedwhen studying physical models (Langhaar, 1980).
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signal (See Appendix C).
Fig. 1C shows examples in which the ideal observer’s response accuracy is constant when SNR and hT are fixed.

Accuracy is computed as the fraction of trials at which the observer’s belief, yt ,matches the underlying state, x (t ),
at the interrogation time,T , that is the fraction of trials for which sign(yT ) = x (T ). The accuracy as a function ofT
and h = 1 remains constant if we change λhigh and λlow, but keep S fixed. As the interrogation timeT is increased, the
accuracy saturates to a value below 1 (Fig. 1C), consistent with previousmodeling studies of decision-making in dynamic
environments (Glaze et al., 2015; Veliz-Cuba et al., 2016; Radillo et al., 2017; Piet et al., 2018). Evidence discounting
limits themagnitude of the LLR, yt . Hence a sequence of low rate clicks can lead to errors, especially for low SNR values.
Moreover, on some trials the state, x (t ), switches close to the interrogation timeT . As it may takemultiple clicks for yt
to change sign after a change point (See Fig. 1B), this can also lead to an incorrect response.

In Fig. 1D we show that the maximal accuracy (obtained forT sufficiently large) as a function of λhigh and λlow
(colormap), is approximately constant along SNR level sets (black oblique curves). This correspondence is not exact
when λhigh and λlow are small (Fig. 1D inset), and we conjecture that this is because higher order statistics of the signal
determine response accuracy in this parameter range. As discussed in Appendix C, for large λhigh and λlow we can use a
diffiusion approximation for the dynamics of Eq. (2). When λhigh and λlow are small, the diffusion approximation does
not apply, and response accuracy is characterized by features of the signal beyond its mean and variance. Since the
SNR only describes the ratio between themean and standard deviation of the stimulus, it cannot capture the impact of
higher order statistics on accuracy at low click rates. Nonetheless, the SNR predicts response accuracy well.

The consequences of theseobservations are twofold: Twoparameter combinations determineoptimal performance,
potentially simplifying experiment design. To ensure coverage of different response accuracy regimes, we can initially
vary SNR and hT . To increase the accuracy of an ideal observer, it is not sufficient to increase both click rates, for
instance, since the SNR stays constant if λhigh and λlow follow the parabolas shown in Fig. 1D. Second, this approach
makes testable predictions about the accuracy of an optimal observer: If we change parameters so that SNR and hT are
fixed, and a subject’s accuracy is affected, this indicates that the subject may not have learned the hazard rate, h or is
using a suboptimal discountingmodel.

4 | POST CHANGE-POINT DECISIONS DEPEND ON SNR
To understand how an optimal observer adapts to environmental changes, we next ask how their fraction of correct
responses depends on the final time,Tfin, between the last change point preceding a decision and the decision itself
(Fig. 2A). Overall accuracy again depends on both SNR and rescaled trial time hT . In addition, for sufficiently long trials,
accuracy as a function of time since the last change point depends only on the rescaled time since the change point, hTfin
and the SNR.

If the click rates, λhigh and λlow, are varied, but S and h are held fixed, the accuracy as a function ofTfin remains
unchanged (Fig. 2B, for h = 1, S = 2). On the other hand, accuracy changes if we fix S/√h (SNR) but vary h (Fig. 2B, left
inset). With fixed S/√h, accuracy depends only on the rescaled time since the last change point, hTfin (Fig. 2B, right
inset). Thus, while absolute accuracy depends on the total length of the trial,T ,measured in units of average epoch
length, 1/h, accuracy relative to the last change point depends only on the elapsed time,Tfin,measured in the same units.

Glaze et al. (2015) introduced the notion of an accuracy crossover effect in the dynamic RDMD task: The normative
model predicts that after a change point observers update their belief more slowly, but eventually reach higher accuracy
at low compared to high hazard rates. Thus plotting themaximal accuracy against time since the last change point for
different hazard rates results in curves that cross. Behavioral data indicates that human observers behave according to
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B: The accuracy as a function of time following a change point is the samewhen S/√h and h are fixed (h = 1 in the plot).
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this prediction (Glaze et al., 2015, 2018).
A similar crossover effect also occurs in the dynamic clicks task: Accuracy just after a change point is lower for

small hazard rates, h, (Fig. 2C) and takes longer to reach 50%, but saturates at a higher level compared tomore volatile
environments. In slow environments, the optimal observer integrates evidence over a longer timescale (1/h), leading
tomore reliable estimates of the state, x (t ). But this increased certainty comes at a price, as it requires more time to
change the observer’s belief after a change point. Similarly, in environments with stronger evidence (larger S, Eq. (4)),
accuracy immediately following a change point is lower, since state estimates, and hence the beliefs aremore reliable
compared to trials with weak evidence (Fig. 2D). However, stronger evidence also causes a rapid increase in accuracy,
which then saturates at a higher level than on trials with weaker evidence (lower S). Therefore, both evidence quality,
and environmental volatility determine accuracy after a change point.

We conclude that accuracy after a change point is characterized by SNR (S/√h) and the rescaled time since the
change point, hTfin . This only holds when trials are sufficiently long, and the belief at trial outset does not affect accuracy.
In addition, increasing SNR lowers accuracy immediately after a change point, and increases the recovery of accuracy
to a higher saturation point (Fig. 2D). On the other hand decreasing volatility, h,while fixing S (Fig. 2C) leads to lower
accuracy immediately after a change point, and higher saturation. However, the rate at which accuracy is recovered
after a change point decreaseswith decreasing h.

These are again characteristics of an optimal observer, and deviations from these predictions indicate departures
from optimality.
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sensitive to relative changes in the discounting rate. The relative error is defined as 100(h̃ − h)/h for the nonlinearmodel
and 100(γ̃ − γ∗)/γ∗ for the linear model. C:Curvature (absolute value of the second derivative) of the accuracy profiles
in panelB, evaluated at their peak, as a function of S/√h. The curvature, and hence sensitivity, of the nonlinear model is
higher for intermediate and large values of S/√h. Since the functions in panelB do not depend on the actual values of h̃
and γ̃, but rather the relative distance of these parameters from reference values, what we show in this plot are relative
curvatures. We compare relative curvatures as h̃ and γ̃ do not have the same units. D: Ratio of the accuracy of the linear
model to that of the normativemodel, as SNR is varied. Along each curve, the discounting rate γ̃ of the linear model is
held fixed at the value γ∗ that wouldmaximize accuracy at the reference SNR indicated by the legend.

5 | A LINEAR APPROXIMATION OF THE NORMATIVE MODEL
Following Piet et al. (2018) we next show that an approximation of the normative model given by Eq. (2) can be tuned to
give near optimal accuracy, but the accuracy of the approximation tends to be sensitive to the changes in the discounting
parameter. This approximate, linear model is given by,

dyt
d t

= κ


∞∑
i=1

δ(t − t Ri ) −
∞∑
j=1

δ(t − t Lj )
 − γ · yt . (7)

In particular, here the nonlinear sinh term in Eq. (2) is replaced by a linear term proportional to the accumulated
evidence.

When tunedappropriately, Eq. (7) closely approximates thedynamics andaccuracyof theoptimalmodel (Fig. 3A) (Piet
et al., 2018; Veliz-Cuba et al., 2016). Moreover, it also provides a good fit to the responses of rats on a dynamic clicks
task (Piet et al., 2018). As the normative and linearmodels exhibit similar dynamics, it appears that they are difficult
to distinguish. However, as we show next, the linearmodel is more sensitive to changes in its discounting parameter,
providing a potential way to distinguish between themodels.

We assume thatT is large enough so that accuracy has saturated (as in Fig. 1C), and compare themaximal accuracy
of the nonlinear and linear model. For the linear discounting rate that maximizes accuracy, γ = γ∗, the linear model
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obtains accuracy nearly equal to the normativemodel (Fig. 3A, inset). The optimal linear discounting rate, γ∗, increases
with SNR (Fig. 3A), whereas the discounting term in the normative, nonlinear model remains constant when the hazard
rate, h, is fixed. When SNR is large, evidence discounting in the linear model can be stronger (larger γ∗), since each
evidence increment is more reliable and can be givenmoreweight. When SNR is lower, linear evidence discounting is
weaker (smaller γ∗) resulting in the averaging of noisy evidence across longer timescales.

What is the impact of using thewrong (suboptimal) evidence discounting rate in the twomodels? To answer this
question we compare the accuracy of two observers, one using the nonlinear model with a wrong hazard rate, h̃ , h, and
the other using the linearmodelwith a suboptimal discounting rate γ̃ , γ∗ . As shown in Fig. 3B accuracy ismore sensitive
to relative changes in γ̃ in the linear model, than relative changes in the assumed hazard rate, h̃, in the nonlinear model.
We quantified the sensitivity of bothmodels to changes in evidence discounting rates by computing the curvature of
accuracy functions at the optimal discounting value over a range of SNRs (Fig. 3C).

Bothmodels are insensitive to changes in their discounting parameter at low SNR (bottom curve of Fig. 3B). This
result is intuitive, as when SNR is small observers perform poorly regardless of their assumptions. On the other hand,
when SNR is high observers receive strong evidence from a single click, and the nonlinear model adequately adapts
across a broad range of discounting parameter values. The linear model, however, is still sensitive to changes in the
discounting parameter, γ. At high SNR, the belief, yt , as descried by either model is driven to larger values. Whereas the
nonlinearmodel can rapidly discount extreme beliefs as it includes a supralinear leak term, the linearmodel is not as
well adapted, and requires fine tuning. Note, however, that at values of SNR higher than the ones used in Fig. 3B, when,
for instance, a single click is sufficient for an accurate decision, both the linear and nonlinear models are insensitive to
changes in their discounting parameters. We also note that the insensitivity of the nonlinearmodel to changes in the
discounting rate, h, suggests that this is a more robust model: An observer who does not learn the hazard rate, h, exactly
can still performwell. A linear model requires finer parameter tuning to achievemaximal accuracy.

The nonlinear model obtains maximal accuracy as long as the assumed hazard ratematches the true hazard rate
h̃ = h. On the other hand, the optimal discounting rate of the linear model is also sensitive to changes in the SNR due to
changes in the click rates. To quantify this effect, we computed the ratio between themaximal accuracy of the linear
model with discounting rate γ̃ to themaximal accuracy of the nonlinearmodel with h̃ = h as the SNRwas varied, but
h was kept fixed (Fig. 3D). To compute the maximal accuracy we kept γ̃ fixed at γ∗, the optimal discounting rate for a
reference SNR. Themaximal-accuracy ratio for the linear model decreases as SNR changed from this reference SNR, as
the optimal discounting parameter of the linear model depends on SNR, and the hazard rate h. Thus, the linear model
can achievemaximal accuracy very close to that of the nonlinear model, but this requires fine tuning.

This points to a general difficulty in distinguishing models subjects could use to make inference: Simpler approxima-
tionsmay predict performance that is near identical to that of a normativemodel. However, this may require precise
tuning of the approximations. If the parameters of the task are changed to differ from those on which the subjects
have been trained, i.e. on tasks where subjects are lead to assume incorrect parameters, the normative model may
behave differently from the approximations. In the case we considered, themodels may be distinguishable if an animal
is extensively trained on trials with fixed parameters h and S, but subsequently interrogated using occasional trials with
different task parameters.

The preceding point is illustrated by the following thought experiment. Assume a subject is extensively trained on
a fixed set of task parameters: Sref = 2, (λlow, λhigh) = (2, 8.5)Hz, h = 1Hz (peak of the red curve in Fig. 3D). We then
introduce some trials with different click rates, say Snew = 5with (λnewlow , λnewhigh) = (12, 53)Hz and h = 1Hz, chosen so that
κ = log(λhigh/λlow) is constant across the two conditions. We denote by Acclin(S) and Accnorm(S) the accuracies of an
observer using the linear and normative models on trials with a given S. Since the subject was trained on click rates that
correspond to Sref, their discounting strategy will be adapted to these values. Note that the ratio between Accnorm(S)
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and Acclin(S)when h = 1 is the red curve in Fig. 3D. Since the ratio between Accnorm(Sref) and Acclin(Sref) is near 1, the
linear and normativemodels cannot be distinguished at Sref. However, a subject using the normativemodel tuned at
Sref, will still perform optimally at S , Sref, if κ and h are held constant. On the other hand, a linear model optimized at
Sref, will no longer be optimal at S , Sref. This distinction is captured by the drop in the accuracy ratio along the red
curve in Fig. 3D.

We can quantify the distinction between the twomodels by their relative difference:
Accnorm(Snew) − Acclin(Snew)

Accnorm(Snew) = 0.05.

More generally, for any decisionmakingmodel, wemay define the quantity

Dmodel(S) := Accnorm(S) − Accmodel(S)Accnorm(S) ,

which will equal 0 if themodel used is the normative one. If we computeDmodel(S) using responses from a real subject,
one can generate curves such as those in Fig. 3D. If the curves are not constant (equal to 1), this would suggest the
subject is not using an optimalmodel. Furthermore, a single value of Snew forwhichDmodel(Snew) , 0 provides evidence
that themodel is not optimal.

In the next two sections, we show how the linear and nonlinear model with added sensory noise differ when fitting
the discounting parameters to choice data.

6 | FITTING DISCOUNTING PARAMETERS IN THE PRESENCE OF SENSORY
NOISE

Themodels we have discussed so far translate sensory evidence into decisions deterministically, and do not account for
the nervous system’s inherent stochasticity (Faisal et al., 2008). We next askedwhether the inclusion of sensory noise
leads to further differences between the twomodels, particularly when fit to choice data.

Brunton et al. (2013) showed that in the static version of the clicks task humans and rats make decisions that are
best described by amodel in which evidence obtained from each click is variable. In the dynamic version of the task, Piet
et al. (2018) showed that rats’ suboptimal accuracy is well explained by amodel that includes similar internal variability.
Piet et al. (2018) modeled such “sensory” noise either by applying Gaussian perturbations to the evidence pulses, or by
attributing, with somemislocalization probability, a click coming from the right or left speaker to the wrong side.

As aminimal model of neural or sensory noise, we too introduced additive Gaussian noise into the evidence pulse of
each click, so that the nonlinear model in Eq. (2) takes the form

dyt
d t

=
∞∑
i=1

ηi δ
(
t − t Ri

)
−
∞∑
j=1

ζj δ
(
t − t Lj

)
− 2h sinh(yt ), (8)

where ηi , ζj ∼ N(κ,σ) are i.i.d. Gaussian random variables withmean κ and standard deviation σ . Similarly, the linear
model from Eq. (7) becomes:

dyt
d t

=
∞∑
i=1

ηi δ
(
t − t Ri

)
−
∞∑
j=1

ζj δ
(
t − t Lj

)
− γy . (9)
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Before fitting these models to choice data, we note that an increase in sensory noise, σ , decreases the value of
the discounting parameters that maximize accuracy in both models (Piet et al., 2018): Noisier observations require
integration of information over longer timescales (Fig. 4A,B). Thus, adaptivity to change points is sacrificed in order to
pool over larger sets of observations . This, in turn, leads to larger biases, particularly after change points. A similar
trade-off between adaptivity and bias has been observed in models and human subjects performing a related dynamic
decision task (Glaze et al., 2018).

We next fit the discounting parameters in bothmodels using synthetic choice data, treating the other parameters
of themodels as known. To do so we produced responses using a fixed reference model from both classes, and fit a model
from each class to the resulting datasets. Specifically, letmref ∈ {L,NL} (L = linear, NL = nonlinear) denote the reference
model used to produce the choice data, and letmfit ∈ {L,NL} denote themodel that was fit to the resulting data. We
independently studied the four possible model pairs (mfit,mref). In what follows, θ refers to the discounting parameter
that was fit to data in any given class, so that θ := γ whenmfit = L and θ := h whenmfit = NL. Note also that the hazard
rate parameter, θ = h, that was fit to data in the casemfit = NL is distinguished both from the hazard rate, hstim, used
to generate click stimuli, and the hazard rate, href, used to produce the reference choice data of the nonlinearmodel.
Therefore, to remove ambiguity, we denote by href, γref the two constant discounting parameter values used to produce
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F IGURE 4 A:Accuracy as a function of the discounting parameter γ for the linear model with sensory noise
described by Eq. (9). As noise increases, maximal accuracy is achieved at lower discounting values (dotted lines). B:
Same as A for the nonlinear model with discounting parameter h. C,D Thewhisker plots represent the spread of the
posterior modes (MAP estimates) obtained across the 500 fitting procedures, for eachmodel pair and reference
dataset size. On each box, the red line indicates themedian estimate. TheMAP estimates are closer withmore trials,
but are biased in the case of model mismatch. E:Average relative error, Eq. (11), in fitting the discounting parameter as a
function of reference dataset size. Each color corresponds to a specific pair (mfit,mref). In the case of model mismatch
(L-NL and NL-L curves) the relative error will not converge to zero due to the bias in the parameter estimate. Panels C-E
describe the same set of fits. See Appendix F for simulation details.
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the reference choice data with the nonlinear and linear models, respectively. To pick these constants in our simulations,
we took the values that would maximize accuracy in the corresponding noise-free systems. That is, href := hstim = 1 and
γref := γ∗ ≈ 6.75 (See Appendix F for more details on the simulations).

During a single fit, we generated stimulus data for N i.i.d. trials,

D := {(Tk , dk ) : 1 ≤ k ≤ N } , (10)

where Tk :=
({
t R
i

}NR ,k
i=1
,
{
t L
j

}NL,k
j=1

)
is the sequence ofNR ,k right clicks andNL,k left clicks on trial k , and dk ∈ {0, 1} is the

choice datum for this trial. We used Bayesian parameter estimation (See Appendix D.3 for details) to obtain a posterior
probability distribution over the discounting parameter, P(θ |D).

To account for the variability in the posteriors that arise due to finite size effects, we performedM = 500 indepen-
dent fits per model pair (mfit,mref), with different dataset sizes: N ∈ {100, 200, 300, 400, 500}. To quantify the goodness
of these fits, we used the relativemean posterior squared error, averaged across theM fits,

err (p1, . . . , pM , θtrue) := 1

θ2trueM
M∑
i=1

∫ ∞

0
pi (θ)(θ − θtrue)2dθ. (11)

This quantity provides a relative measure of how close the posterior distribution is to θtrue. Here pi (θ) denotes the
posterior density, Pr (θ ��D) , from fit i . Note, the definition of θtrue is nuanced. If the reference and fit models are the
same, then θtrue is set to the ground truth, i.e. the discounting parameter value used to produce the reference choice
data (e.g., θtrue = href when mfit = mref = NL). However, when the fit and reference model classes differ (i.e. when
mfit , mref), then there is no obvious ground truth, and θtrue must be defined differently. In this case, we used the
correspondence γref ↔ href. That is, when fitting the nonlinear model we always set θtrue := href, and when fitting the
linearmodel, we always set θtrue := γref. There are other possible ways of defining θtrue in this case, such as picking a
discounting parameter value for the fit model class that produces the same accuracy as the referencemodel. Although
arbitrary, our definition is sufficient to illustrate – as we show next – that cross-model fits are feasible and that the
mfit = L case is qualitatively different than themfit = NL case, regardless of the referencemodel class. However, due
to the model mismatch, we expect a bias in the parameter estimate for these situations (i.e. an error that does not
converge to 0), unless we define the ground truth self-referentially as the value of the parameter for which the estimate
is unbiased.

The maximizer θ∗ of our Bayesian posterior P(θ |D) defines the maximum likelihood estimate (MLE)6 of our dis-
counting parameter. We plot the distribution of these across the 500 independent fits, for each (mfit,mref) pair in
Fig. 4C,D. As the number of trials used in the reference dataset increased from 100 to 500, the spread of the estimates
diminishes. However, a bias in the estimate appears whenevermfit , mref. For reference datasets of size 500, 98% of
the 500MAP estimates in the L-NL fits lie strictly above γtrue, versus 50.4% for the corresponding L-L fits. Similarly,
86.6% of the estimates in the NL-L fits lie strictly below htrue, versus 44.2% for the corresponding NL-NL fits.

We found that the relative error from Eq. (11) decreases as larger blocks of trials are used to fit the discounting
parameter (Fig. 4E).We note the following parallels between the sensitivity to parameter perturbation of eachmodel
class (explored in Fig. 3B,C) and the decreasing rate of the relative errors for eachmodel pair. As expected, a model that
produces responses that are less sensitive to changes in its discounting parameter requires more trials to be fit to data:
The reduction in relative error is the slowest for the (NL,NL) and (NL, L) pairs. This is consistent with the insensitivity of
the nonlinearmodel to changes in discounting parameter, making it difficult to identify its parameters. On the other
6Which is equal to theMaximumAPosteriori (MAP) estimate in our case, as we picked a uniform prior over a wide interval (See Appendix D.3 for details).
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hand, the linear model fits – (L,NL) and (L, L) – converge more rapidly, likely because the linear model is sensitive to
changes in its discounting parameter (See Fig. 3B,C).

In anticipation of our next section, we point out that computing theMLE can be treated as a statistical learning
problem in which weminimize a negative log-likelihood loss function over the datasetD (See Eq. 7.8 in Friedman et al.
(2001)):

LLL (dk ,mfit(Tk ) |σ, θ) := − log P(dk = mfit(Tk ) |σ, θ). (12)

Here dk andmfit(Tk ) are the choices generated by the reference and fit models, respectively, on the k th trial. As before
the discounting parameter, θ, and the level of sensory noise, σ, parametrize the fittedmodel. Fittedmodel responses
mfit(Tk ) are non-deterministic only because of sensory noise. The likelihood P(dk = mfit(Tk ) |σ, θ) is the probability that
the response generated by the fitmodel on trial k matches the response observed in the data (See Appendix F for details
on how this likelihoodwas computed for eachmodel class), whichmust be obtained frommany realizations ofmfit(Tk )
subject to click noise of amplitude σ . TheMLE, θ∗, formfit is then found byminimizing the expected loss across all trials,

θ∗ := argminθE [LLL (dk ,mfit(Tk ) |σ, θ)] = argminθ 1N
N∑
k=1

LLL (dk ,mfit(Tk ) |σ, θ), (13)

taking the expectation over all N samples in the dataset, but conditioning on the fittedmodel’s discounting parameter,
θ and noise amplitude, σ . As the MLE is consistent, we expect the fit parameters will converge to the true parame-
ters (Wald, 1949) (Fig. 4C,D). Framing Bayesian parameter estimation in this way will help us compare to our approach
of fitting byminimizing the 0/1-loss function we introduce next.

7 | FITTING WITH THE 0/1-LOSS FUNCTION

We next asked how the parameters that define the model whose responses best match the choices of a reference
observer compare to those that maximize the likelihood of observing these choices. As we notedminimizing the log-
likelihood loss LLL given in Eqs. (12) and (13) gives the parametersmost likely to have produced the data, andwe expect
the corresponding estimates of the discounting parameter to converge to the true value when the fit and reference
models match.

To find the parameters that maximize the probability of matching the choices of themodel to those observed in a
dataset on every trial, we define the 0/1-loss function,

L0/1(dk ,mfit(Tk , Z j ) |σ, θ) := 1(dk , mfit(Tk , Z j ) |σ, θ),

where 1 is the indicator function, (Tk , dk ) is a data sample indicating the click stimulus and response on a trial k , and
mfit(Tk , Z j ) is the response of the fittedmodel with discounting parameter θ, click stimulus Tk , and Z j , j = 1, ...,Q are
realizations of sensory noise, i.e. a sequence of i.i.d. Gaussian variables that perturb the evidence obtained from each
click. Wewill marginalize over realizations of the (unobserved) sensory noise, andQ denotes the number of realizations
weuse in the actual computation. Fitting the discounting parameter θ then involvesminimizing the empirical expectation



RADILLO, VELIZ-CUBA, JOSIĆ, & KILPATRICK 15

of the loss function L0/1 over the data samples (Tk , dk ) and across realizations, Z j , of sensory noise,

θ∗ := argminθE [
L0/1(dk ,mfit(Tk , Z j ) |σ, θ)

]
= argminθ 1

QN

Q∑
j=1

N∑
k=1

L0/1(dk ,mfit(Tk , Z j ) |σ, θ).

For a binary decisionmodel, this involves finding the parameter θ that minimizes the expected number of mismatches
(or probability of amismatch) between the choices of themodel and those observed by the data (minimizing 0/1-loss),
or maximizes the expected number of matches (or probability of a match) between the data and fit model (maximizing
0/1-prediction accuracy). In our fits, we usedQ = 1, sampling a single realization of click noise perturbations per click
stream. As we sampled from a large number of click streams, this was sufficient to average the loss function.

Both loss functions, LLL and L0/1 , are commonly used to fit models to data (Friedman, 1997; Friedman et al., 2001).
Minimizing the expectation of L0/1 is reasonable, as it seems likely that the parameters that define the model that
matches the largest number of choices observed in the data should be close to the one the reference observer actually
uses (assuming that there is nomodel mismatch). These parameters will then also best predict future responses. On the
other hand, minimizing LLL produces themost likely parameters that produced the observed data.

However, it iswell-known that parameters estimated using different cost functions can differ, evenwhen themodels
used to fit and generate the data agree. To see the difference between using LLL and L0/1 in Eq. (13) consider aBernoulli
random variable, B with parameter p > 0.5. Given a large sequence of observed outcomes, N →∞, the parameter that
minimizes the expected loss L̄LL converges to p, as theMLE is consistent and asymptotically efficient (Wald, 1949). On
the other hand, the parameter that minimizes the expected loss L̄0/1 is p = 1 (See Appendix E): The individual outcomes
in a series of independent trials are best matched by amodel that always guesses themore likely outcome.

We observed a similar bias whenwe used the L0/1 loss function to infer the discounting parameters in our evidence
accumulationmodels (Friedman, 1997): We generated a set of 106 click-train realizations, Tk , and two sets of responses,
dk , from each the linear and nonlinear evidence accumulationmodelswith sensory noise (SeeAppendix F). Nextwe used
these stimulus realizations as input to an evidence-accumulationmodel (linear or nonlinear) with a fixed discounting
parameter to produce a corresponding set of 106 reference observer responses. We generated a second set of model
responses using the same database of 106 click-train realizations, but allowed the discounting parameter θ to vary. We
call the fraction of time the reference observer andmodel responses agree the 0/1-prediction accuracy (PA) of themodel,
the complement of the expected 0/1-loss over a test set, PA = 1 − L̄0/1. When themodel and reference observer agree
the PA is 1 in the absence of sensory noise (σ = 0), as the stimulus determines the choice fully. However, PA decreases
as sensory noise increases.

Somewhat surprisingly, the parameters that minimize expected 0/1-loss are biased, and this bias increases with
sensory noise (Fig. 5). In particular, the discounting parameter that best predicts the reference observer responses is
lower than the one used to generate these responses (Fig. 5B,D). This is consistent with our observations in Section 6,
as integration over longer periods of time decreases response variability (Fig. 4A,B). This tendency is pronounced
when larger values of the discounting parameters are used to produce the training data. Larger discounting leads to
shorter integration time, and increased variability in the responses. Furthermore, the nonlinear (NL) model exhibits this
bias muchmore strongly than the linearmodel (L). See Appendix G for a possible metric of the reported bias, and its
dependence on sensory noise for eachmodel class (Fig. 6).

Thus sensory noise is themain reason the expected 0/1-loss is minimized at a discounting parameter that does not
match the one used to generate the data. Such internal noise introduces variability in the responses: even the same
model will not match its own responses given the same stimulus, and a decrease in output variability can increase the
PA of amodel. In the present case, such a decrease in response variability is achieved by decreasing the discounting
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F IGURE 5 The 0/1-prediction accuracy (PA) of a fit model as a function of the discounting parameter of the fit
model (vertical axis), andmodel used to generate training data (horizontal axis). Each column corresponds to a noise
value, and each row to amodel (linear or nonlinear). Colors indicate the variation of the PA as the discounting
parameters are varied (for γ2 ≤ γ1, as PA is symmetric about the diagonal). Red curves represent the fit parameter that
maximizes percent match, as a function of the reference parameter. For higher noise values, this lies well below the
diagonal, γ1 = γ2, which would correspond tomatching the parameters of the referencemodel and data. The same 106
click realizations were used across all panels, but each decision from the twomodels was computedwith independent
sensory noise realizations. Other parameters are hstim = 1Hz, (λhigh, λlow) = (20, 5)Hz, andT = 2 s.

parameter, and increasing integration time.
We expect that similar biases occur whenever a 0/1-loss function is used to fit models to choice data. Sensory noise,

lapses in attention, and numerous other sources of noise nearly always introduce some variability in the responses of
observers. In such cases, models that are less variable than the observer may best match an observed set of responses,
and best predict future responses (Friedman et al., 2001). However, these parameters are not alwaysmost likely to have
been used by the observer. Using a 0/1-loss functionmay thus not always reveal the process that the observer used to
generate the responses, even if themodel the observer uses is close to the one used to fit the data.

8 | DISCUSSION

Normativemodels of decision-makingmake concrete predictions about the computations and actions of experimental
subjects, and can be used to interpret behavioral data (Geisler, 2003). Suchmodels can also be used to identify task
parameter ranges in which observers’ responses aremost sensitive to their assumptions about the task. In turn, such
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information can then be used to tease apart candidatemodel classes the experimental subjectmight be employing. Here
we have focused on properties of a normative, nonlinear model, and its differences with a close, linear approximation.
We found that the linearmodel is more sensitive to changes in the discounting parameter compared to the nonlinear
model, and suggest this is why fitting a linear model to choice data requires fewer trials than fitting a nonlinear model.

In dynamic environments, task parameters may have predictable effects on subjects’ overall accuracy and accuracy
relative to change points. We have shown that there is a range of intermediate to high SNR inwhich the linearmodel
is sensitive to changes in its discounting parameter, but the nonlinearmodel is not. This suggests this range could be
probed to distinguish the evidence accumulation strategies subjects are using. These strategies may also be fit by other
approximate models, like accumulators with no-flux boundaries or sliding-window integrators (Wilson et al., 2013;
Glaze et al., 2015; Barendregt et al., 2019), which can also be sensitive to changes in their discounting parameters.

Psychophysical tasks used to infer subjects’ decision-making strategies can require extensive training and data
collection (Hawkins et al., 2015b,a). Normative and approximately normative decision-makingmodels divergemost in
their response accuracy when tasks are of intermediate difficulty. As we have shown, task difficulty may be controlled
by combinations of task parameters representing fewer dimensions than the total number of parameters. Identifying
these parameter combinations may be possible by computing the signal-to-noise (SNR) ratio of the stimulus produced
by a particular parameter set. However, subjects’ responses are also susceptible to noise from sensing and processing
evidence, so it is important to extend descriptions of SNR to account for such factors (Brunton et al., 2013).

Normative models of evidence accumulation and decision-making can be complex, and simpler, approximately
optimal strategiesmay perform nearly as well (Wilson et al., 2010; Glaze et al., 2018). If such approximate strategies
are easier to learn and tune, subjects may prefer them. Piet et al. (2018) showed rats’ performance on the dynamic
clicks task is well fit by a linear discounting model. However, optimal and well-tuned suboptimal strategies may be
difficult to distinguish, and this problem is likely to worsenwith increasing task complexity and correspondingmodel
dimensionality. We have described possible model-guided task design approaches that may help tease apart similarly
performingmodels.

The addition of noise in our evidence accumulation models provides an extra parameter that can account for
suboptimal performance. What is the best way to distinguishing whether internal noise or suboptimal evidence
accumulation strategies best account for underperformance? Oneway to do this, as suggested by our model analysis, is
to collect sufficient data over trials in which a task parameter was changed unbeknownst to the observer.

For purposes of model fitting to experimental data, we expect that trial-to-trial variability can bemore faithfully
tracked in the dynamic clicks task than in dynamic decision tasks based on the RDMD task. This is due to the relative
simplicity of the clicks as evidence sources: They are either on the right or left, although click side and evidence strength
can bemisattributed (Piet et al., 2018). In contrast, dot motion can be estimated in many ways, making it difficult to
interpret which aspects of the stimulus an animal observed, and used as evidence. Spatiotemporal samplingmethods
may be too spatially coarse andmay require fitting filters to each subject, which could change trial-to-trial (Adelson and
Bergen, 1985; Park et al., 2016). Transforming click times to delta pulses using Eq. (2) is more straightforward. Thus, the
dynamic click task paradigm is a promising avenue for probing evidence accumulation to complement dynamic tasks
which are extensions of classic RDMD (Glaze et al., 2015).

The use of discrete evidence tasks does come with caveats. The neural computations underlying visual motion
discrimination in non-human primates are well studied (Born and Bradley, 2005), and have a significant history of being
linked to decision tasks (Gold and Shadlen, 2007). As a result, there is an extensive literature connecting neural systems
for processing visual motion and those involved in decision deliberation (Shadlen andNewsome, 1996; Roitman and
Shadlen, 2002). However, only recently have the neural underpinnings of the decisions of rats performing auditory
discrimination tasks been examined (Brody and Hanks, 2016). Furthermore, mathematical issues may arise in precisely
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characterizing discounting between clicks, when evidence arrives discretely. Many different functions could lead to the
same amount of evidence discounting between clicks, leading to ambiguity in themodel selection process.

Parameter identification for evidence accumulation models can be sensitive to the method chosen to fit model
responses to choice data (Ratcliff and Tuerlinckx, 2002). Glaze et al. (2015) used the approach of minimizing the
cross-entropy error function, whichmeasures the dissimilarity between binary choices in themodel and the data. Piet
et al. (2018) used amaximum likelihood approach to identify model parameters that most closely matched choice data.
This is related to the Bayesian estimation approachwe used to fit parameters of the nonlinear and linearmodels. We
obtained similar results byminimizing the expected 0/1-loss, which biases towards less variable models, especially for
models with strong sensory noise (Fig. 5). Amore careful approach to fittingmodel parameters should also consider
penalizingmore complexmodels, which would also allow us to distinguish between the nonlinear and linear model.

Glaze et al. (2018) recently studied the strategies humans use whenmaking binary decisions in dynamic environ-
ments whose hazard rates changed across trial blocks. In this case the ideal observer must infer both the state, and
the rate at which the environment is changing (Radillo et al., 2017). Interestingly, Glaze et al. (2018) found that the
model that best accounted for response data was not the full Bayes optimal model, but rather a sampling model in
which a bank of possible hazard rates replaces the full hazard rate distribution. Such sampling strategies can more
easily be implemented in spiking networks (Buesing et al., 2011), andmay also arise when considering an information
bottleneck, which forces a balance between information required from the past andmodel predictivity (Bialek et al.,
2001). As in Occam’s razor, the brain may favor simpler models, especially when they perform similarly to more complex
models (Balasubramanian, 1997).

Analyses of normative models for decision-making are important both for designing experiments that reveal
subjects’ decision strategies and for developing heuristic models that may perform near-optimally (Veliz-Cuba et al.,
2016; Piet et al., 2018; Glaze et al., 2018). Our findings suggest subjects should be testedmainly at intermediate levels
of SNR to provide informative response data. We found that such a level of SNR is between 1 and 2 for an optimal
observer, and between 3 and 4 for an observer that uses linear discounting. Tasks that are too easy or hard allow
subjects to obtain similar performancewith a wide variety of strategies. Interestingly, we also found that themodels
that best predict observer responses, are not necessarily those closest to the ones that the observer is using. Moreover,
modifications of normativemodels can also suggest more revealing experiments, like those that include feedback or
signaled change points. Ultimately, data from decision-making tasks that require subjects to accumulate evidence
adaptively will provide a better picture of how organisms integrate stimuli to make choices in the natural world.

A | NORMATIVE EVIDENCE ACCUMULATION FOR DYNAMIC CLICKS

In dynamic environments, the state xt ∈ {
xR , xL

} evolves according to a continuous-timeMarkov chain with symmetric
transition rates given by the hazard rate, h. We construct a sampled-time approximation {

x̃∆tt
}
t∈[0,T ] of the continuous-

time Markov process xt , parameterized by ∆t , which is valid for ∆t small enough (Gardiner, 2009). More precisely,
we define a discrete-timeMarkov chain xn ∈ {xR , xL } by the transition probabilities: P(xn , xn−1 |xn−1) = h · ∆t and
P(xn = xn−1 |xn−1) = 1 − h · ∆t , for all n ∈ Î and initial condition x0. Note that these probabilities are a truncation to
first order in∆t of the transition probabilities that one would otherwise obtain for the embedded discrete-timeMarkov
chain {xn∆t }n∈Î. Then, we set

x̃∆tt := xn , (14)
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for all n ∈ Î and all n∆t ≤ t < (n + 1)∆t . In the following, our discrete-time evidence accumulation equations are
embedded in continuous-time via the correspondence given by Eq. (14). As∆t → 0 the resulting equations apply to the
original state process xt in virtue of the sampled-time approximation just described.

Just as in Eq. (1), the log-posterior odds ratio in discrete-time is:

yn := log P(xn = x
R |sR (n), sL (n))

P(xn = xL |sR (n), sL (n)) .

Hence, equations (A.3) and (B.1) from the appendix of Veliz-Cuba et al. (2016) hold in our context:

yn − yn−1 = log f
R
∆t (ξn )
f L∆t (ξn )

+ log 1 − h · ∆t + h · ∆t · e−yn−1
1 − h · ∆t + h · ∆t · e yn−1 .

In addition, we use the approximation log(1 + z ) ≈ z for small |z |, since 0 < ∆t � 1, so that:

∆yn = log f
+
∆t (ξn )
f −∆t (ξn )

− 2h∆t sinh(yn−1).

Taking the limit∆t → 0 yields theODE:

dyt
d t

= κ


∞∑
i=1

δ(t − t Ri ) −
∞∑
j=1

δ(t − t Lj )
 − 2h sinh(yt ),

or the equivalent rescaled version

dyt
d t

=
∞∑
i=1

δ(t − t Ri ) −
∞∑
j=1

δ(t − t Lj ) −
2h

κ
sinh(κ · yt ),

which both appear in Piet et al. (2018).

B | DERIVATION OF DYNAMIC CLICKS SNR

Our derivation considers the signal in the dynamic clicks task to be the difference in the number of clicks during the final
epoch prior to interrogation at time t = T . The distribution of final epoch times τ of the telegraph process x (t ) is

p(τ) = he−hτ + e−hτδ(τ −T ), τ ∈ [0,T ]. (15)

The first term is the distribution of waiting times between switches. We truncate the period at the interrogation time,T ,
and the second term accounts for the probability that no switches occur during the entire trial, and the final and only
epoch is of lengthT . For a final epoch of a given length τ , we can describe both the conditional expectation and variance
of the difference in click counts∆N again using the results of Skellam (1946):

E [∆N |τ] = (λhigh − λlow)τ, Var [∆N |τ] = (λhigh + λlow)τ .
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Therefore to obtain the unconditional expectation and variance for ∆N , wemust marginalize using the laws of total
expectation and variance with respect to the distribution of epoch times τ given in Eq. (15). This yields

E[∆N ] = (λhigh − λlow)
∫ T

0
τp(τ)dτ = 1 − e−hT

h
· (λhigh − λlow) (16)

for the total expectation. Notice that asT →∞, the expected number of clicks is limited from above by limT→∞ E[∆N ] =
(λhigh − λlow)/h. Using the law of total variance we can thus compute

Var[∆N ] = Var [E[∆N |τ]] + E [Var[∆N |τ]] = (λhigh − λlow)2 · Var[τ] + 1 − e−hT
h

· (λhigh + λlow)

=
1 − 2hT e−hT − e−2hT

h2
(λhigh − λlow)2 +

1 − e−hT
h

(λhigh + λlow). (17)

Plugging Eq. (16) and (17) into the expression for SNRTh = E[∆N ]/
√Var[∆N ] yields

SNRTh =
(1 − e−hT )(λhigh − λlow)√

(1 − 2hT e−hT − e−2hT )(λhigh − λlow)2 + h · (1 − e−hT )(λhigh + λlow)
. (18)

Recalling our definition from equation (4),

S := λhigh − λlow√
λhigh + λhigh

, (19)

we can rewrite equation (18) in themore convenient form

SNRTh = F (hT , S/
√
h) = (1 − e−hT )S/√h√

(1 − 2hT e−hT − e−2hT )S2/h + 1 − e−hT , (20)

where we have highlighted the fact that the SNR is a function of the rescaled trial time hT and the Skellam SNR rate S
scaled by the root of the timescale√

1/h. Indeed, in the limit as h → 0, we find that SNRTh → SNRT0 = S ·
√
T consistent

with Eq. (3). We also find that in the limit of infinitely long trialsT →∞, Eq. (20) tends to

lim
T→∞

SNRTh = S/
√
h√

S2/h + 1
,

so the SNR is solely determined by S/√h.

Note also that to keep Eq. (20) constant it is sufficient to keep its constituent arguments constant. This is convenient,
since we alreadymust keep hT constant to fix the statistics of information accumulated prior to the final epoch, so we
predict that performance is fixed by the following two parameters

S
√
h
=

λhigh − λlow√
h(λhigh + λlow)

= c1 and hT = c2,

as reported in Eq. (6).
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C | DIFFUSION APPROXIMATION

Here we demonstrate the diffusion approximation of the normative model for the dynamic clicks task, Eq. (2) in the
limit of large Poisson rates λhigh and λlow. Diffusion approximations for jump processes have been addressed by Lánskỳ
(1997), and Richardson and Swarbrick (2010) who studied the impact of shot noise and pulsatile synaptic inputs on
integrate-and-fire models. Following this work, we note that the difference of the click streams in Eq. (2) can be
approximated by a drift-diffusion process withmatchedmean,±κ(λhi − λlow), and variance, κ2(λhi + λlow). This results in
the following stochastic differential equation (SDE) for the approximation ỹt :

dỹt = κg (t )(λhigh − λlow)dt + κ
√
λhigh + λlowdWt − 2h sinh(ỹt )dt , (21)

where g (t ) = sign [λR (t ) − λL (t )] and dWt is the increment of a Wiener process. Note the resulting nonlinear drift-
diffusionmodel is similar to the normative models presented in (Glaze et al., 2015; Veliz-Cuba et al., 2016). The SNR of
the signal in Eq. (21) can be associated with the mean divided by the standard deviation in an average-length epoch.
Fixing this SNR leads to the relations in Eq. (6). Importantly, the signal in Eq. (21) is characterized entirely by its mean
and variance, so we expect that the performance of themodel can be directly associated with the SNR. Note, however,
that Eq. (21) will only be valid for λhigh, λlow � 1. Otherwise, onemust consider the effects of higher order moments of
the click streams, and a prediction of performance purely based on the SNRwill break down (Fig. 1D, Inset), since higher
order statistics likely shape response accuracy in these cases.

D | MODEL IDENTIFICATION

Wefit parameters of the linear and nonlinear models in two stages. First, we generated synthetic response data from a
model (linear or nonlinear) by solving the correspondingODE or SDE.We then solved a second set of models (linear or
nonlinear) for a range of discounting parameters (γ for the linearmodel; h for the nonlinearmodel), and constructed
a posterior distribution over the discounting parameter. For noisy models, we expect the posterior to be a smooth
function that is peaked around the most likely values of discounting parameter for that trial. We now describe the
details of these parameter fitting procedures for each of the cases: linear vs. nonlinear models.

D.1 | Linearmodel with stochastic response

We incorporate noise into the linear Eq. (7) by consideringmultiplicative noise on the click increments, as described by
Eq. (9). For a fixed realization of the click train, we can solve this equation explicitly for yt at the end of trial k :

y kT =

N k
R∑

i=1

ηi e−γ(T k −t iR ) −
N k
L∑

j=1

ζj e−γ(T k −t jL ), (22)
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where ηi , ζj ∼ N(κ,σ), revealing yT k is simply the sum of i.i.d. normal random variables scaled by exponential decay.
Conditioning on the clicks Tk , then yT k is normally distributed

[
yT k |Tk , γ

] with expectation and variance
Ek := E [

yT k |Tk , γ
]
= κ


N k
R∑

i=1

e−γ(T k −t iR ) −
N k
L∑

j=1

e−γ(T k −t jL )
 ,

Vk := Var [yT k |Tk , γ] = σ2c 
N k
R∑

i=1

e−2γ(T k −t iR ) +
N k
L∑

j=1

e−2γ(T k −t jL )
 ,

so r̃k (γ) ∈ ±1 is a Bernoulli random variable. The likelihood function will be a smooth function of γ, and determined as
an integral over the half-line corresponding to the ±1 decision:

P(r̃k = ±1 |γ, Tk ) = ±
∫ ±∞

0
p(yT k |Tk , γ)dyT k = Φ

(
± Ek√
Vk

)
,

where Φ(z ) is the cumulative distribution function of a standard normal random variable. We can thus compute the
posterior over the discounting parameter γ as a rescaled product of the likelihoods on each trial.

D.2 | Nonlinearmodel with stochastic response
When click heights are noise-perturbed, we cannot explicitly solve the extended nonlinear model. However, we can
make progress by applying the idea of mapping between clicks. If we draw trains of clicks, Tk , ahead of time, Eq. (8)
defines the nonlinear model with multiplicative noise. We can iteratively define the probability density p(y , t ) by
sampling over the click amplitude noise distribution at each click according to

p(y , t+n ) =
1

√
2πσ2

∫ ∞

−∞
e−(y−z−κn )2/2σ2p(z , t−n )dz , (23a)

∂p(y , t )
∂t

= 2h · ∂
∂y
[sinh(y )p(y , t )] , tn < t < tn+1, (23b)

where click noise is drawn from the normal distribution N(κ,σ), tn is the time of the n-th click, κn = ±κ according to
the side of the n-th click, andwe have used the convolution theorem for independent random variables. For any trains
of clicks, Tk , Eq. (23) can be solved iteratively to obtain the distribution p(y ,T ). The likelihood will thus be a smooth
function of h, determined by the integral over the half-line corresponding to the decision (±1):

P(r̃k = ±1 |h, Tk ) = ±
∫ ±∞

0
p(yT k |Tk , h)dyT k . (24)

D.3 | Bayesian fitting procedure
Our goal is to compute or estimate the posterior distribution Pr (θ ��D) , which by Bayes’ rule is proportional to the
product of the likelihood of the data with the prior over the parameter7:

P(θ |D) ∝ P(D |θ)P0(θ). (25)
7Since all the other task andmodel parameters are assumed known and fixed, wemay omit them from the equations.
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Ourmethod focuses on exploiting the likelihood function P(D |θ). We have,

P(D |θ) = P(T1:N , d1:N |θ) = P(d1:N |T1:N , θ)P(T1:N |θ) = P(d1:N |T1:N , θ)P(T1:N ),

where the last step comes from the fact that the clicks trains are independent of the discounting parameter θ used by
the decision-makingmodel8. From there, we remark that the choice data are conditionally independent on the clicks
stimulus and the discounting parameter. Thus,

P(d1:N |T1:N , θ) =
N∏
k=1

P(dk |Tk , θ).

Therefore we can rewrite Eq. (25) as:

P(θ |D) ∝ P0(θ)
N∏
k=1

P(dk |Tk , θ). (26)

We use uniform priors for θ, over a finite interval [0, a]. In this context, the problem of computing the posterior
distribution of θ reduces to assessing the likelihoods of the decision data on each trial, P(dk |Tk , θ) (1 ≤ k ≤ N ), for a
range of θ-values spanning the interval [0, a]. In practice, we picked a = 40when fitting the linearmodel and a = 10when
fitting the nonlinear model. Finally, note that for numerical stability reasons, our algorithms actually sum log-likelihood
values, as opposed tomultiplying probability values. Relegating the θ-independent prior into a normalization constant
C , Eq. (26) becomes, in the log-domain:

log P(θ |D) = C +
N∑
k=1

log P(dk |Tk , θ), θ ∈ [0, a]. (27)

E | MINIMIZING 0/1-LOSS IN A BERNOULLI RANDOM VARIABLE
Consider a simple stochastic binary decision-making model in which we ignore the specifics of evidence sources, as
in Pesaran and Timmermann (1992). We that in this case the 0/1-loss function also leads to biased estimates. This
result has been pointed out in previous work in which parameter fitting results have been compared between Bernoulli
randomvariables fitwith the 0/1-loss function as opposed tomaximum likelihood estimators (Friedman, 1997; Friedman
et al., 2001).

Consider a Bernoulli random variable B1 with success probability p1 generating the reference choices, and the
fit Bernoulli model B2 with success probability p2. Minimizing the log-likelihood loss function recovers p∗2 = p1 in the
limit of a large number of trials N →∞: In this limit, given p2, we have that the expected loss measured by the negative
log-likelihood is

L̄LL (d |p2) = − [p1 log p2 + (1 − p1) log(1 − p2)] , (28)

which is minimized9 at p∗2 = p1, the mean of B1. Thus, the parameter from the reference model is recovered, as the

8We remind the reader that we operate a distinction between the discounting parameter of the decisionmaker and the hazard rate used to produce the data.9Note Eq. (28) is the cross-entropy betweenB1 andB2 .
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Bernoulli random variable satisfies the requirements for theMLE to be consistent (Wald, 1949).
On the other hand, if we fit the parameter p2 byminimizing the expected 0/1-loss function, in the limit of N →∞

trials, the expected loss is

L̄0/1(d |p2) = 1 − P(B1 = B2) = p1 − p2(2p1 − 1),

which decreases in p2 for p1 > 0.5, so theminimal expected loss when p1 > 0.5 is achieved with p2 = 1 (for p1 < 0.5 it is
minimized at p2 = 0).

Of course, the synthetic data and the fit evidence accumulationmodels we consider are generated from the same
click streams on each trial, so a realistic comparison should account for such noise correlations in simplified Bernoulli
random variablemodels, as analyzed in Dai et al. (2013). This analysis is more involved, andwe save such a study for
future work.

F | DETAILS ON MONTE CARLO SIMULATIONS FOR FIGURES
Fig. 1C was generated using 105 simulations of Eq. 2 from t = 0 to t = 1s with the parameters shown in the figure.
The time for saturation was chosen to be 0.4s. For each time between 0 and 0.4s the accuracy was computed as the
percentage of the 105 simulations for which the choices were correct. Fig 1D was generated using 105 simulations
of Eq. 2 for each data point in the (λhigh, λlow) plane. Themaximal accuracy reported corresponds to the numerically
computed accuracy at t = 1s.

Fig. 2B-Dwas generated using 105 simulations of Eq. 2 from t = 0 to t = 3s with the parameters shown in the figure.
The reference change point was chosen to be the last change point in the simulation. For each time between the last
change point and one unit of time later, the accuracy is the fraction of the correct responses, simulations for which
sign(yT ) = x (T ), the sign of the LLRmatched the sign of the telegraph process. Since intervals between change points
are exponentially distributed, there aremanymore data points for short times than for long times after change points.
Since some simulations did not last a full unit of time after the last change point, the number of simulations is less than
or equal to 105 (decreasing as time increases). Simulations that had no change point were omitted when computing the
accuracy.

Fig. 3A was generated as follows. For each value of S/√h, 106 simulations of Eq. 7 from t = 0 to t = 1s were
generated over a range of γ values. For each value of γ the accuracy was computed at t = 1s and γ∗ was selected as the
value that maximized accuracy. This resulted in a specific value of γ∗ for each S/√h. Fig. 3Bwas generated using 106
simulations of Eq. 2 (using h̃ instead of h) and Eq. 7 (using γ̃ instead of γ) from t = 0 to t = 1s for a range of values of h̃
and γ̃. For each value of h̃ and γ̃, the maximal accuracy was estimated as the value of the accuracy at t = 1s. Fig. 3C
was generated by estimating the second derivative of the curves shown in Fig. 3B for each value of S/√h. Fig. 3Dwas
generated as follows using Eq. 2 and Eq. 7. For each of the four curves, γ̃ was fixed to the value of γ∗ corresponding to
the reference values S/√h = i for i = 1, 2, 3, 4 (see Fig. 3A). For each curve, this value of γ̃ was not changedwhen new
S/
√
h values were used. Then, for each curve, themaximal accuracy for the linear and nonlinear models were computed

using 106 simulations for a range of new S/√h values. The quotient of themaximal accuracy of the linear model and the
maximal accuracy of the nonlinear model is shown in the figure.

Fig. 4C-D presents the results of five hundred independent fitting procedures, performed on two different dataset
sizes. The parameters for the reference dataset of trials are: hstim = 1Hz, (λhigh, λlow) = (20, 5)Hz, andT = 2 s. For
each fitting procedure, the trials (either 100 or 500) were sampled uniformly without replacement from a bank of
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10,000 trials. The fitting algorithm is an implementation of the Bayesian approach leading to equation (27) above.
When fitting the linear model, the analytical solution from appendix D.1 was used to compute the likelihood of a single
trial (P(dk |Tk , θ) term in Eq. (27)). When fitting the nonlinear model, Monte Carlo sampling was used instead. More
specifically, the distribution of the decision variable at decision time for a given clicks stimulus, p(yT |T), was estimated
by simulating 800 independent trajectories. Thus, each trajectory had its own independent realization of sensory noise
but the realization of the stimulus (timing of the clicks) was frozen. Once the density of yT was estimated, the likelihood
term, P(dk |Tk , θ) in Eq. (27), could be estimated. More details on this method, such as how the number of 800 particles
was chosen and how this method was validated on the linear model for which the analytical solution is available, may be
found in section 3.5.5 of Radillo (2018).

In Fig 4E, up to trial number 500 on the x-axis, the same fits as in panels C-Dwere used to compute the relative
error (y-axis). Because of the high computational cost of our fitting algorithm (Monte Carlo sampling described above),
the points for 1000 trials on the x-axis were computedwith only 84 independent fits per model pair (as opposed to 500
for the other points of the figure).

All panels in Fig. 5 were producedwith a common dataset of 106 trials, generated by presenting the same sets of
click streams to the evidence accumulationmodels. All trials had same task parameters: trial durationT = 2s; hazard
rate h = 1Hz; λhigh = 20Hz and λlow = 5Hz so S/√h = 3; and the initial state of the environmentwas randomly assigned
with a uniform prior. For each panel of Fig. 5, we selected a pair (mfit,mref) ∈ {(L, L), (NL,NL)} along with a sensory
noise amplitude (σ ∈ {0.1, 2} for ηi , ζi ∼ N(κ,σ)) to be applied to the evidence pulses from the clicks. For each possible
pair of discounting parameters ((γ1, γ2) for linear models, (h1, h2) for nonlinear models), we computed the 106 decisions
(Left or Right) and determinedwhether themodels agreed or not. For the linear model, we used values of γ1, γ2 between
0 and 10, with increments of 0.1. For the nonlinear model, we used values of h1, h2 between 0 and 2.5, with increments
of 0.1. For each decision comparison between referencemodel and fitmodel, the same click streamswere used, but
independent noise realizations of click perturbations were applied. The number of agreements was divided by the total
number of decision comparisons to produce the color of a single point in the plot.

G | BIAS METRIC AS A FUNCTION OF SENSORY NOISE

In this section, we provide additional information about the bias in parameter recovery with the 0/1-loss function
described in Section 7. Fig. 6A includes results from simulations for noise= 1 in addition to noise= 0.1 and noise= 2 also
shown in Fig. 5. Bias magnitude and its dependence on sensory noise were determined as follows. Let θref ∈ {γ1, h1 }
denote the discounting parameter of the referencemodel – this is themodel used to produce the initial decision data.
Let θfit denote the fit value of the discounting parameter, using 0/1-loss minimization. In Fig. 6A, θref spans the x -axis
and θfit as a function of θref is depicted by the golden curve. After smoothing θfit with a Savitzky-Golay filter, we obtain
θsmooth represented by the green curves in the figure. Picking a fixed reference value for θref (red dotted line), we then
plot the bias as a function of sensory noise levels in Fig. 6B, where bias is defined as:

bias := log θref
θsmooth

. (29)

The fixed values of θref chosenwere the same as in Section 6, γ1 := 6.7457, h1 := 1. As described in Section 7, the bias in
parameter recovery with the 0/1-loss fitting procedure is more pronounced for the nonlinear model than for the linear
model, and increases with sensory noise.
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F IGURE 6 Bias in parameter recovery as a function of sensory noise. A: Recovered discounting parameter from the
fits as a function of the reference discounting parameter used to produce the initial decision data. Top and bottom rows
are reproductions of Fig. 5 while themiddle row is for an intermediate level of sensory noise. The actual fit parameters
(golden) were smoothed (green) in order to compute the bias in panelB for the reference discounting parameters
indicated by the red dotted lines. The black diagonal indicates the identity line, which would correspond to perfect
parameter recovery. B: Bias in parameter recovery Eq. (29) as a function of sensory noise, for the twomodel pairs (L-L in
blue andNL-NL in golden).
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REV I EWS AND RESPONSES
Publication Decision 1 fromNeurons, Behavior, Data analysis, and Theory on July 27, 2019
Editorial board’s determination: Revise and resubmit
Comments from the editor. Sorry again for the long delay. The reviewer is more or less happy with the manuscript,
there is a list of suggestions, which I would like to ask you to pay careful attention to before the paper can be accepted.
Reviewers’ comments are italicized.Our responses are in plain text. Changes to themanuscript are in blue.
Comments to the author.
Summary. This is a careful and thorough paper that presents several results regarding a normative model of decision-making
within dynamic environments. The specific case studied is that of an evidence accumulation task presented in Piet et al., 2018. In
this task, the subject hears two streams of Poisson-timed clicks coming from their left and right sides. The click rates on both sides
may switch during the trial with some hazard rate h. The subject is asked to infer which side had the higher rate of clicks when
the trial ends, thus making newer information more relevant than older information. In such a task, there are four parameters: h,
T , λhigh, λlow, where h is the hazard rate,T is the duration of the trial, λhigh is the higher Poisson rate of clicks, and λlow is the
lower rate of clicks.

The authors first show that, over a broad range as long as high, low are sufficiently large, themaximal accuracy achievable by
the normative model almost exactly depends on only two parameters, S/√h, and hT , where S = (λhigh − λlow)/√λhigh + λlow.
They use these two effective parameters to study the model. The authors first compare the behavior of the normative model to a
linear model that approximates the normative model, and find that the linear model performs near-optimally if the discounting
parameter is finely tuned. To further compare the models, they generated choice data from both the normative model and the
linear model, and fit the choices and clicks separately to either the normative model or the linear model. They found that the
parameters recovered are biased when the model used to generate data and the model used to fit the data are different. The
linear model required less number of trials when it was fit to data; the discounting parameter converged to the true value used to
generate data faster for the linear model than for the normative model. The authors note that different cost functions (MLE and
0/1-loss) lead to different estimates of the parameter values and one should be cautious about what cost function to use.

The authors suggest that the normative model and the linear model fits on subjects? performance at different hT and S
provide a convenient way of identifying the decision-making strategy that the subject is employing in the dynamic clicks task.

Major comment:The authors claim that ‘if an animal is extensively trained on trials with fixed parameters h and S, but subse-
quently interrogated using occasional trials with different task parameters,’ one may be able to identify whether the subject is
using the normative model or a suboptimal (or linear approximation) model. This is an important point, and it would be greatly
strengthened if this claim can be supported directly with simulations and further elucidated with explanations of the specific
steps that should be taken in order to identify the strategies.
Specifically, in the case where the clicks are generated with hstim, and the animal performs normatively with href, we may
fit the normative model and recover href reliably. We can compute the maximal accuracy of the normative model given the
experimental S/√hstim, and compare it to the accuracy of the animal. However, if we fit the linear model, how should we go
from here? Howwould one, without knowingmref, and knowing only the clicks/choice data and the experimental parameters
hstim and S, identify the model that the animal is using?
Indeed, you raise important points, which we can address by taking a closer look at the accuracy ratios we have plotted
in Fig. 3D.We now explain the setup of an experiment which could be run to test the sensitivity of a subject’s evidence
accumulationmodel to determine whether it is normative-like or more sensitive like the linear models we considered.
Of course, in this idealized case, we are not considering internal noise, but the principles would extend to noisy models
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as discussed in Piet et al (2018). In general, the linear model will not adapt well to interspersed trials with different
parameters, whereas the normativemodel will bemore robust. This is now explained in the following paragraphs we
have added to the end of Section 4:
The preceding point is illustrated by the following thought experiment. Assume a subject is extensively trained on a
fixed set of task parameters: Sref = 2, (λlow, λhigh) = (2, 8.5)Hz, h = 1Hz (peak of the red curve in Fig. 3D). We then
introduce some trials with different click rates, say Snew = 5with (λnewlow , λnewhigh) = (12, 53)Hz and h = 1Hz, chosen so that
κ = log(λhigh/λlow) is constant across the two conditions. We denote by Acclin(S) and Accnorm(S) the accuracies of an
observer using the linear and normative models on trials with a given S. Since the subject was trained on click rates that
correspond to Sref, their discounting strategy will be adapted to these values. Note that the ratio between Accnorm(S)
and Acclin(S)when h = 1 is the red curve in Fig. 3D. Since the ratio between Accnorm(Sref) and Acclin(Sref) is near 1, the
linear and normativemodels cannot be distinguished at Sref. However, a subject using the normativemodel tuned at
Sref, will still perform optimally at S , Sref, if κ and h are held constant. On the other hand, a linear model optimized at
Sref, will no longer be optimal at S , Sref. This distinction is captured by the drop in the accuracy ratio along the red
curve in Fig. 3D.

We can quantify the distinction between the twomodels by their relative difference:
Accnorm(Snew) − Acclin(Snew)

Accnorm(Snew) = 0.05.

More generally, for any decisionmakingmodel, wemay define the quantity

Dmodel(S) := Accnorm(S) − Accmodel(S)Accnorm(S)
which will equal 0 if themodel used is the normative one. If we computeDmodel(S) using responses from a real subject,
one can generate curves such as those in Fig. 3D. If the curves are not constant (equal to 1), this would suggest the
subject is not using an optimalmodel. Furthermore, a single value of Snew forwhichDmodel(Snew) , 0 provides evidence
that themodel is not optimal.
Minor comments:
Introduction: when the term ‘nonlinear model’ is first used, the authors haven’t yet clarified that here the term is synonymous
with ‘normative model.’ Also, some readers might not be familiar with what a 0/1 loss function is, making that part of the Intro a
little unclear for them.
It is important to note that the nonlinear model is only normative when the discounting parameter is tuned exactly,
and this is whywe used this specific phrasing. To clarify this, we have added the word ‘nonlinear’ in parentheses when
mentioning the normativemodel in the prior sentence. We also added the following footnote: The ‘nonlinear’ model
here refers to the family of models obtained by tuning the discounting rate away from the value defining the normative
model. This detuning results in amodel that is not normative.
We describe the 0/1-loss function now in the sentence following its introduction: The 0/1-loss function gives a one unit
penalty on trials in which the decision predicted by themodel and the data disagree, and no penalty when they agree.
Therefore, minimizing this loss function leads tomodels that best match the trial-to-trial responses in the data rather
than the response accuracy.

Page 4, last paragraph: You need the word ‘alone’: the phrase ‘kappa does not predict the response accuracy’ should probably be
‘kappa alone does not predict the response accuracy.’
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Thanks for pointing this out. We havemodified the text as suggested.

Figure 1, caption: Might be helpful to title panel C as ‘h=1’ and remind readers in the caption that hT and SNR jointly determine
accuracy? And for panel D, perhaps write ‘Maximal accuracy of the ideal observer, atT � 1?
Good suggestion. We have added the title to Fig. 1C and the sentence, “Note that hT and S/√h jointly determine
accuracy.” to the caption, and also the qualifier, atT � 1, to the caption of Fig. 1D.

Equation 5: Would be helpful to explicitly say here that F represents the SNR
Wehave added the phrase “representing the SNR” to the sentence preceding equation 5.

Paragraph immediately after equation 5: as written, it sounds a bit like F depending only on those 2 parameters follows from
keeping hT fixed, although that is not what you mean.
Wehave changed the confusing sentence to: As indicated, F (hT , S/√h) only depends on hT and S/√h.

Paragraph at the end of Section 3: ‘To increase the accuracy of an ideal observer, it is not enough to increase both click rates, for
instance.’ I didn’t understand that? If everything else is kept fixed, but both lambdas grow, doesn’t SNR grow and hT stay fixed?
In this situation SNR does not necessarily grow. Indeed, this depends on how the parameters are incremented. For in-
stance, if the lambdas grow along the parabolas shown in Fig. 1D, then SNR stays constant. We have edited the sentence
referenced above to explicitly state this. It now reads: To increase the accuracy of an ideal observer, it is not sufficient to
increase both click rates, for instance, since the SNRstays constant ifλhigh andλlow follow theparabolas shown in Fig. 1D.

Figure 3C, label on vertical axis: why is this ‘relative’ accuracy?
The adjective “relative”, wasmeant to highlight the fact that we computed the curvature of the graphs in Fig. 3B, repre-
senting functions of the relative error rather than the actual values of h̃ and γ̃. We agree that this was confusing, and
have removed the word “relative” from the plot and added an explanation to the caption, which now says: Since the
functions in panelB do not depend on the actual values of h̃ and γ̃, but rather the relative distance of these parameters
from reference values, what we show in this plot are relative curvatures. We compare relative curvatures as h̃ and γ̃ do
not have the same units.

The authors state that for Figure 4E, NL-L and L-NL do not converge to zero, whereas NL-NL and L-L converge to zero eventually.
This is not very clear in the figure, and it would help the reader if the number of trials was larger to show this more clearly.
This panel shows that for a given number of trials (in the figure, < 500 trials), the fits for the linear model were better than the
normative model. How sufficient should the number of trials be for the fits to the normative model to be better than the fits to
the linear model? In principle, when the normative model is fit to dataset generated by the normative model, it should eventually
have lower relative error than the linear model.
We ran an additional 84 fitting procedures permodel pair for training sets of 1,000 trials. We did not runmore simu-
lations as ourMonte Carlo samplingmethod is costly (these 84 simulations took 24 hours to run on amodern 4-core
laptop). We report the resulting relative errors in the new Fig. 4E. This figure now shows that the NL-NL curve does fall
below the L-NL curve on average after 1000 trials. We also added the following explanation to appendix F of the revised
manuscript: In Fig 4E, up to trial number 500 on the x-axis, the same fits as in panels C-Dwere used to compute the
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relative error (y-axis). Because of the high computational cost of our fitting algorithm (Monte Carlo sampling described
above), the points for 1000 trials on the x-axis were computed with only 84 independent fits per model pair (as opposed
to 500 for the other points of the figure).

Figure 5 needs labels C and D.What was the grid of values used for h and in generating Fig. 5? There are comparisons between
0.1 and 2, but do we see a more deviating trend as a function of noise level? That is, what is the deviation like when noise is
0.5 or 1, for example? It would be great to have a summary plot with a metric of deviation separately for both the linear and
normative models. What do we see when the metric is shown as a function of noise? Having this summary figure will help the
authors establish the point that ‘the parameters that minimize expected 0/1-loss are biased, and this bias increases with sensory
noise,’ and that ‘the NLmodel exhibits this bias muchmore strongly than the L model.’
Wehave added the labels C andD to the appropriate panels in Figure 5. We have also specified the grid values used in
the simulations in appendix F, using the following added passage: For the linear model, we used values of γ1, γ2 between
0 and 10, with increments of 0.1. For the nonlinear model, we used values of h1, h2 between 0 and 2.5, with increments
of 0.1.
Regarding the second suggestion of measuring the bias in parameter recovery for intermediate values of noise, we
have added the figure that appears below in this response letter, and is now contained in Appendix G to our manuscript.
We reference this figure in the following text we have added to Section 7: See Appendix G for a possible metric of the
reported bias, and its dependence on sensory noise for eachmodel class (Fig. 6).

Appendix B that derives the SNR has typos. In the sentence right after Eq. (16), the statement is E [N ] = (λhigh − λlow)/√(h), as
T approaches infinity. Should this be E [N ] = (λhigh − λlow)/h?
Yes, we have checked Appendix B thoroughly, and corrected this typo.

Eq. (17) seems to contain an error that multiplies 2 in front of hT*exp(-hT). In the sentence right after Eq. (17), SNR=E[Delta
N]/Var[Delta N]. Should this be SNR=E[Delta N]/sqrt(Var[Delta N])? In the equation that follows this sentence, h is not multiplied
in the denominator.
You’re right – we have now corrected these typos, and also spotted amissing factor of 2 in the denominator of the full
SNR expression. The equations should all be correct now.

For convenience, one could state what S is also in the Appendix.
Wehave added Eq. (19) in Appendix B as a reminder of Eq. (4) for the reader.

Appendix F on the details of the simulations could be more detailed. The authors state that when fitting the nonlinear model,
Monte Carlos sampling was used. Please explain further on this fitting method to the extent that the reader can replicate.
We have added the following passage to Appendix F: More specifically, the distribution of the decision variable at
decision time for a given clicks stimulus, p(yT |T), was estimated by simulating 800 independent trajectories. Thus,
each trajectory had its own independent realization of sensory noise but the realization of the stimulus (timing of
the clicks) was frozen. Once the density of yT was estimated, the likelihood term, P (dk |Tk , θ) in Eq. (27), could be
estimated. More details on this method, such as how the number of 800 particles was chosen and how this methodwas
validated on the linearmodel forwhich the analytical solution is available,may be found in section 3.5.5 of Radillo (2018).
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Although the confidence intervals do not seem to contain the true parameter value, are the mismatches statistically significant in
Figure 4CD? That is, are the parameter values significantly greater than the true parameter value?
Wewould like to note that thewhiskers of each box in Fig. 4C,D do not represent confidence intervals. Instead, they
represent the interval of values that are not considered outliers. More specifically, if q1, q3 are the first and third
quartiles respectively, then the whiskers define the interval: [q1 − 1.5 × (q3 − q1), q3 + 1.5 × (q3 − q1)].
Instead of testing the hypothesis that the MAP estimates are different than the θtrue value, we provide a summary
statistic for the training datasets of size 500 trials. We have added the following sentences to the end of section 6: For
reference datasets of size 500, 98% of the 500MAP estimates in the L-NL fits lie strictly above γtrue, versus 50.4% for
the corresponding L-L fits. Similarly, 86.6% of the estimates in the NL-L fits lie strictly below htrue, versus 44.2% for the
corresponding NL-NL fits. We believe this is more informative than a p-value.

Publication Decision 2 fromNeurons, Behavior, Data analysis, and Theory on August 26, 2019
Editorial board’s determination: Accept
Comments from the editor. Thanks a lot for your patience with the first round of reviews. I have now checked your
revision and have no further comments, whichmeans themanuscript will be transferred to a “provisional acceptance"
stage.
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